A Computationally Efficient Implementation of Fictitious Play for Large-Scale Games
نویسندگان
چکیده
The paper is concerned with distributed learning and optimization in large-scale settings. The wellknown Fictitious Play (FP) algorithm has been shown to achieve Nash equilibrium learning in certain classes of multi-agent games. However, FP can be computationally difficult to implement when the number of players is large. Sampled FP is a variant of FP that mitigates the computational difficulties arising in FP by using a Monte-Carlo (i.e., sampling-based) approach. The Sampled FP algorithm has been studied both as a tool for distributed learning and as an optimization heuristic for large-scale problems. Despite its computational advantages, a shortcoming of Sampled FP is that the number of samples that must be drawn in each round of the algorithm grows without bound (on the order of √ t, where t is the round of the repeated play). In this paper we propose Computationally Efficient Sampled FP (CESFP)—a variant of Sampled FP in which only one sample need be drawn each round of the algorithm (a substantial reduction from O( √ t) samples per round, as required in Sampled FP). CESFP operates using a stochastic-approximation type rule to estimate the expected utility from round to round. It is proven that the CESFP algorithm achieves Nash equilibrium learning in the same sense as classical FP and Sampled FP. Simulation results suggest that the convergence rate of CESFP (in terms of repeated-play iterations) is similar to that of Sampled FP.
منابع مشابه
COMPUTATIONALLY EFFICIENT OPTIMUM DESIGN OF LARGE SCALE STEEL FRAMES
Computational cost of metaheuristic based optimum design algorithms grows excessively with structure size. This results in computational inefficiency of modern metaheuristic algorithms in tackling optimum design problems of large scale structural systems. This paper attempts to provide a computationally efficient optimization tool for optimum design of large scale steel frame structures to AISC...
متن کاملA Fictitious Play Approach to Large-Scale Optimization
In this paper we investigate the properties of the sampled version of the fictitious play algorithm, familiar from game theory, for games with identical payoffs, and propose a heuristic based on fictitious play as a solution procedure for discrete optimization problems of the form max{u(y) : y = (y1, . . . , yn) ∈ Y1 × · · · × Yn}, i.e., in which the feasible region is a Cartesian product of fi...
متن کاملDeep Reinforcement Learning from Self-Play in Imperfect-Information Games
Many real-world applications can be described as large-scale games of imperfect information. To deal with these challenging domains, prior work has focused on computing Nash equilibria in a handcrafted abstraction of the domain. In this paper we introduce the first scalable endto-end approach to learning approximate Nash equilibria without any prior knowledge. Our method combines fictitious sel...
متن کاملFictitious Self-Play in Extensive-Form Games
Fictitious play is a popular game-theoretic model of learning in games. However, it has received little attention in practical applications to large problems. This paper introduces two variants of fictitious play that are implemented in behavioural strategies of an extensive-form game. The first variant is a full-width process that is realization equivalent to its normal-form counterpart and th...
متن کاملBrown's original fictitious play
What modern game theorists describe as “fictitious play” is not the learning process George W. Brown defined in his 1951 paper. His original version differs in a subtle detail, namely the order of belief updating. In this note we revive Brown’s original fictitious play process and demonstrate that this seemingly innocent detail allows for an extremely simple and intuitive proof of convergence i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1506.04320 شماره
صفحات -
تاریخ انتشار 2015